

North South University Department of Mathematics and Physics

MAT260: Differential Equations & Orthogonal Functions

Course Name:Differential Equations & Orthogonal FunctionsCourse Code:MAT 260Credit Hours :3 CreditsPre-requisite: MAT 130Semester: Fall 2017

Course Short Description:

This course is intended for Civil engineering students who require a working knowledge of differential equations; included are techniques and applications of ordinary differential equations and an introduction to partial differential equations, as well as the power series and some important orthogonal functions.

Instructor	 Dr. Mohammad Sahadet Hossain	
Office	Associate Professor	
Email:	Department of Mathematics and Physics	
Office Time	North South University SAC 1028 mohammad.hossain@northsouth.edu TBA	
Course Learning Outcomes:		

Course Outline:

1. First Order Ordinary Differential Equations:

Introduction to Ordinary Differential Equations (ODEs), mathematical modeling with ODEs, Separable ODE, Linear ODE

2. Second Order ODEs:

Homogeneous Linear ODEs of Second Order, Homogeneous Linear ODEs with Constant Coefficients, Euler–Cauchy Equations, Existence and Uniqueness of Solutions. Wronskian, Non-homogeneous ODEs, Homogeneous Linear ODEs, Linear independence, Wornskian.Homogeneous Linear ODEs with Constant Coefficients, Non homogeneous Linear ODEs. Modeling and Applications.

3. Series Solutions of ODEs

Infinite Series, Maclaurin and Taylor Series, Power series method, Extended Power Series Method, Method of Frobenius, Bessel's Equation. Bessel Functions and general solution.

4. Partial Differential Equations (PDEs)

Functions of several variables, Limits, Continuity, Differentiability. Multiple Integrals. Orthogonal Functions, Fourier Series, Derivation and Solution of Classical PDEs

Marks Distribution:

Course Final

TBA

	Attendance- Regular Quizzes (3 quizzes) Two Mid-Terms- Final Exam- <u>Assignment/Class performance/</u> Total	5% 15% 40% 30% <u>10%</u> 100%
Text Books:	 A First Course in Differential Equations with Modeling and Applications, (10th Edition), Author-Dennis G. Zill. Calculus (9th Edition), Howard Anton and others Advanced Engineering Mathematics (10th Edition)- Author: Erwin Kreyszig 	
Grading Policies:	As per NSU Grading Policy	
Important dates:		
First midterm	TBA	
Second midterm	TBA	

Rules and Restrictions:

- (a) Submit the assignments in recommended date. No late submission will be accepted. Make a photocopy of your assignment before submission.
- (b) There is **no scope to retake a quiz**. In case of Mid-term- or Final exam, exceptional cases*(unfortunate physical inability, accidents, serious illness) may be considered conditionally (with a **penalty of 20% reduced marks**) with proper justification.
- (c) A late present means you come to the class within 10 minutes the class starts. You are automatically **absent after 10 minutes delay** and not allowed in the class.
- (d) Three consecutive absents need an official clarification.
- (e) Student having attendance less than 50% of total classes will be not allowed to sit for Final Exam.
- (f) If you are a **probation student/retake**, I would like to have you in 24 classes (**20 present is Must**)